Decentralized and Distributed Transient Control for Microgrids

نویسندگان

  • Christoph Kammer
  • Alireza Karimi
چکیده

This paper treats the problem of primary and secondary control design in low-inertia power grids with mixed lines and a large amount of inverter-interfaced generation. A dynamic phasor model is developed that represents the electromagnetic and electromechanic dynamics of lines, inverters, synchronous machines and constant power loads. The model offers a straightforward way to combine white-, greyand blackbox models, and its structure lends itself well to control design. In a next step, a novel method to design fixed-structure robust controllers based on the frequency response of multivariable systems and convex optimization is presented. The method offers an intuitive way to define the control performance specifications, and is able to directly design discrete-time controllers. Finally, the potential of the control design method and the dynamic phasor model is demonstrated in a comprehensive example. In three scenarios it is illustrated how the approach can be used to significantly improve frequency and voltage transient performance in low-inertia power grids. Decentralized as well as distributed architectures for primary and secondary control are studied, and results are validated in simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Control and Load Sharing in a DC Islanded Microgrid Based on Disturbance Observer

Increasing DC loads along with DC nature of distributed energy resources (DERs) raises interest to DC microgrids. Conventional droop/non-droop power-sharing in microgrids suffers from load dependent voltage deviation, slow transient response, and requires the parameters of the loads, system and DERs connection status. In this paper, a new nonlinear decentralized back-stepping control strategy f...

متن کامل

Suggested New Voltage and Frequency Control Framework for Autonomous Operation of Microgrids

Decentralized control strategies are popular candidates in microgrids control because of their reliability and performance. Conventionally, droop control (as a main decentralized strategy) is been utilized in order to prevent permanent droop of voltage and frequency after change in loads and also to share generated power between distributed generation units. In this paper, a new droop control s...

متن کامل

Transient Stability Enhancement in Microgrids Including Inverter Interfaced Distributed Generations

With increasing the presence of Microgrids (MGs) in the power systems, investigating the MG stability during transient faults is necessary. This study investigates the transient stability analysis of a MG supplied by multiple inverter interfaced distributed generations (IIDGs) during fault. The transient stability of a MG is highly depends on the IIDGs control strategy. A MG, simulated on Matla...

متن کامل

Plug-and-Play Robust Voltage Control of DC Microgrids

The purpose of this paper is to explore the applicability of linear time-invariant (LTI) dynamical systems with polytopic uncertainty for modeling and control of islanded DC microgrids under plug-and-play (PnP) functionality of distributed generations (DGs). We develop a robust decentralized voltage control framework to ensure robust stability and reliable operation for islanded DC microgrids. ...

متن کامل

Decentralized Control Strategy for Optimal Energy Management in Grid-Connected and Islanded DC Microgrids

This paper proposes a decentralized control technique to minimize the total operation cost of a DC microgrid in both grid-connected and islanded modes. In this study, a cost-based droop control scheme based on the hourly bids of all participant distributed generators (DGs) and the hourly energy price of the utility is presented. An economic power sharing technique among various types of DG unit...

متن کامل

Economic Droop Scheme for Decentralized Power Management in DC Microgrids

This paper proposes an autonomous and economic droop control scheme for DC microgrid application. In this method, a cost-effective power sharing technique among various types of DG units is properly adopted. The droop settings are determined based on an algorithm to individually manage the power management without any complicated optimization methods commonly applied in the centralized control ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017